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Abstract
Superpositions of longitudinal elastic plane harmonic waves in an isotropic
medium are treated using the formalism presented in the previous paper.
Intensities and phases of the partial plane waves are specified by the spherical
harmonics. The presented solutions describe unique families of elastic fields:
orthonormal beams and three different types of localized fields (for the sake
of brevity, called storms, whirls and tornadoes). For an elastic storm, the time
average energy flux is identically zero at all points. The elastic whirls and
tornadoes have circular and spiral energy flux lines, respectively. The solutions
are illustrated by calculating fields, energy densities and energy fluxes.

PACS numbers: 62.30.+d, 43.20.+g, 02.30.Nw

1. Introduction

In free space or a linear medium, any superposition of plane harmonic waves (eigenwaves)
provides an exact solution of the corresponding wave equation. Among them, electromagnetic
and weak gravitational orthonormal beams and localized fields, defined by a given set of
orthonormal scalar functions on a two- or three-dimensional beam manifold, stand out because
of their unique properties [1–3]. The families of orthonormal beams can be used as convenient
functional bases in analysis of wave propagation and scattering. The time-harmonic localized
fields have a very small (about several wavelengths) core region with maximum intensity
of field oscillations and a very specific energy transport [1–3]. In the first paper [4] of this
series, we extended the approach proposed in [2] to the case of elastic waves in isotropic and
anisotropic mediums and sound waves in an ideal liquid.
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On this basis, we consider here superpositions of longitudinal elastic plane harmonic
waves (eigenwaves) in an isotropic medium, defined by the spherical harmonics Y s

j as [4]

W s
j (r, t) = exp(−iωt)

∫ 2π

0
dϕ

∫ θ2

0
exp[ir · k(θ, ϕ)]Y s

j (θ, ϕ)ν(θ, ϕ)W (θ, ϕ) sin θ dθ (1)

where W = W (θ, ϕ) is the amplitude function, and ν = ν(θ, ϕ) is the beam state function.
For all fields treated, the value Y s

j (θ, ϕ) of function Y s
j at given θ and ϕ specifies the intensity

and the phase of an eigenwave with the unit wave normal

k̂ = k/k = er = sin θ ′(e1 cos ϕ + e2 sin ϕ) + e3 cos θ ′ (2)

where er is the radial basis vector of the spherical coordinate system, (ei ) are the Cartesian
basis vectors, θ ′ = κ0θ , and parameter κ0 satisfies the condition 0 < κ0 � 1. These fields are
formed from plane waves propagating in the solid angle � = 2π(1 − cos κ0θ2).

The plan of the paper is as follows. In section 2, we present two basically different types
of orthonormal beams. Time-harmonic localized fields are treated in section 3. Concluding
remarks are made in section 4.

2. Orthonormal beams

2.1. Orthonormal beams with θ2 = π/2, κ0 = 1, and � = 2π

Let us consider orthonormal beams W s
j (1) with θ2 = π/2 and κ0 = 1, formed from plane

waves propagating into a solid angle � = 2π . A longitudinal elastic eigenwave has the one-
dimensional amplitude subspace, and its displacement vector u can be written as u = (u · k̂)k̂.
With κ0 = 1, we have θ ′ = θ , and the amplitude function becomes [4]

W (θ, ϕ) ≡
(

u

f

)
=

(
er

ik(λLe3 + 2µL cos θer)

)
(3)

where f = σe3 is the force density, σ is the stress tensor, k = 2π/λ = ω/v1 is the wavenumber,
v1 = √

(λL + 2µL)/� is the phase velocity, λL and µL are the Lame modules [5], and � is the
medium density.

With κ0 = 1 and W (θ, ϕ) (3), the orthonormalizing function [4] ν = ν(θ, ϕ) reduces to
a constant. As a consequence, from equations (1) and (3) we find the displacement vector u

and the force density f of the beam to be

u = ν1ei(sψ−ωt)u0 (4)

f = ikν1ei(sψ−ωt){µLeI ss−1
j [sin ◦2] + µLe∗I ss+1

j [sin ◦2] + e3I ss
j [λL + 2µL cos2]} (5)

where

u0 = eI ss−1
j [sin] + e∗I ss+1

j [sin] + e3I ss
j [cos] (6)

ν1 = 1

π

√
NQ

�v3
1

e = (eR + ieA)/2 (7)

eR = e1 cos ψ + e2 sin ψ eA = −e1 sin ψ + e2 cos ψ (8)

r = ReR + ze3 R = r sin γ z = r cos γ. (9)

Here, NQ is the normalizing constant [4], R, ψ and z are the cylindrical coordinates, r , γ and
ψ are the spherical coordinates of the point with radius-vector r. Complex scalar function
I sm

j [f ] = I sm
j [f ](r, γ ) is defined by the spherical harmonic Y s

j = Y s
j (θ, ϕ), an integer m

and a scalar function f = f (θ). Its definition and the properties are presented in [2, 4]. The
notations emphasize the fact that I sm

j [f ](r, γ ) is a functional regarding f at fixed r and γ . For
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any given f , I sm
j [f ](r, γ ) is a function of r and γ . When it cannot cause a misunderstanding,

we omit the arguments (r, γ ). The real and imaginary parts of I sm
j [f ] can be separated as [2,4]

I sm
j [f ] = i|m|(J sm

j0 [f ] + iJ sm
j1 [f ]). (10)

Using the general relations for elastic eigenwaves [4] and the expression W s
j (3), we

can calculate tensors γ and σ for all partial eigenwaves and then replace W (θ, ϕ) in (1) by
the obtained tensor amplitude functions γ (θ, ϕ) and σ(θ, ϕ). This gives, on integration, the
deformation and the stress tensors of the beam as

γ = ikν1ei(sψ−ωt)γ0 (11)

σ = ikν1ei(sψ−ωt)(λL1I ss
j [1] + 2µLγ0) (12)

where

γ0 = ρI ss−2
j [sin2] + ρ∗I ss+2

j [sin2] + ρ1I ss
j [sin2]

+ρ2I ss−1
j [sin ◦2] + ρ∗

2 I ss+1
j [sin ◦2] + ρ3I ss

j [cos2] (13)

ρ = e ⊗ e ρ1 = e ⊗ e∗ + e∗ ⊗ e = 1
2 (1 − ρ3) (14)

ρ2 = 1
2 (e ⊗ e3 + e3 ⊗ e) ρ3 = e3 ⊗ e3 (15)

and 1 is the unit dyadic.
Substituting u (4), γ (11) and σ (12) into the expressions for the time average kinetic wK

and elastic wE energy densities, and the time average energy flux density vector S (see [4, 5]
for the definitions of these quantities) yields

wK = w0

1∑
p=0

{ 1
2 (J ss−1

jp [sin])2 + 1
2 (J ss+1

jp [sin])2 + (J ss
jp[cos])2} (16)

wE = w0

λL + 2µL

1∑
p=0

{
λL(J ss

jp[1])2 +
µL

2
[(J ss−2

jp [sin2])2 + (J ss+2
jp [sin2])2

+(J ss−1
jp [sin ◦2])2 + (J ss+1

jp [sin ◦2])2 + 2(J ss
jp[sin2])2 + 4(J ss

jp[cos2])2]

}
(17)

S = S0S
′ = 2S0

λL + 2µL
Re (λLu∗

0I ss
j [1] + 2µLγ0u

∗
0) (18)

where S0 = NQ/λ2, w0 = S0/v1. The normal component S ′
N of the normalized energy flux

density vector S′ is given by

S ′
N = S3

S0
= 1

λL + 2µL

1∑
p=0

{µL(J ss−1
jp [sin]J ss−1

jp [sin ◦2] + J ss+1
jp [sin]J ss+1

jp [sin ◦2])

+2J ss
jp[cos]J ss

jp[λL + 2µL cos2]}. (19)

The radial S ′
R, the azimuthal S ′

A, and the normal S ′
N cylindrical components of S′ as well as

both energy densities wK and wE are independent of the azimuthal angle ψ . Figure 1 shows
S ′

N as a function of R′ = R/λ at z = 0.
For the beams defined by the zonal spherical harmonics (s = 0, j = 0, 1, . . .), the above

general relations simplify drastically. In particular, equations (6), (13) and (18) become

u0 = eRI 01
j [sin] + e3I 00

j [cos] (20)

γ0 = 1
2 (eR ⊗ eR − eA ⊗ eA)I 02

j [sin2] + 1
2 (eR ⊗ e3 + e3 ⊗ eR)I 01

j [sin ◦2]

+ 1
2 (1 − ρ3)I 00

j [sin2] + ρ3I 00
j [cos2] (21)

S = S0
(
S ′

ReR + S ′
Ne3

)
(22)



6262 G N Borzdov

0.5 1 1.5 2
R’

0.2

0.4

0.6

0.8

S’N

1 2

3

0.5 1 1.5 2
R’

0.05

0.1

0.15

0.2

0.25

S’N

1

2

3

(a)

(b)

Figure 1. Normal component S′
N of the normalized energy flux vector of elastic beams as a function

of R′ = R/λ; z = 0; λL/µL = 7/9; θ2 = π/2; κ0 = 1; � = 2π ; (a) j = s = 0 (curve 1);
j = 1, s = 0 (curve 2); j = s = 1 (curve 3); (b) j = 2, s = 0 (curve 1); j = 2, s = 1 (curve 2);
j = s = 2 (curve 3).

where

S ′
R = 2

λL + 2µL

1∑
p=0

{µLJ 00
jp [cos]J 01

jp [sin ◦2]

+J 01
jp [sin](J 00

jp [λL + µL sin2] + µLJ 02
jp [sin2])} (23)

S ′
N = 2

λL + 2µL

1∑
p=0

{J 00
jp [cos]J 00

jp [λL + µL cos2] + µLJ 01
jp [sin]J 01

jp [sin ◦2]}. (24)
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Figure 2. Normalized energy density w′ = (wK + wE)/w0 of an elastic beam as a function
of cylindrical coordinates R′ = R/λ and z′ = z/λ; λL/µL = 7/9; θ2 = π ; κ0 = 0.3;
� = 2π [1 − cos(0.3π)]; j = 2; s = 1.

Hence, for such beams both the displacement vector u and the energy flux vector S lie in the
meridional planes.

2.2. Orthonormal beams with θ2 = π , κ0 � 1/2, and � � 2π

The spherical harmonics Y s
j comprise a complete orthonormal system on the unit sphere S2.

However, for the fields treated in the previous section, the beam manifold B [4] is the northern
hemisphere S2

N of S2. As a consequence these fields form two separate sets of orthonormal
beams, defined by the spherical harmonics Y s

j with even and odd j , respectively. It may be
advantageous to obtain a complete system of orthonormal beams W s

j , defined by the whole

set of spherical harmonics Y s
j , for which 〈W s

j |Q|W s ′
j ′ 〉 = 0 if j ′ �= j and/or s ′ �= s.

To this end, let us set θ2 = π , κ0 � 1/2, and the amplitude function

W (θ, ϕ) ≡
(

u

f

)
=

(
er

ik(λLe3 + 2µL cos θ ′er)

)
(25)

with er given by (2). In this case, the beam manifold is the unit sphere (B = S2),
� = 2π(1 − cos κ0π) � 2π , and orthonormalizing function [4] becomes

ν(θ) = 1

π

√
κ0NQ sin κ0θ

2�v3
1 sin θ

. (26)

The smaller is κ0, the smaller is �, and the beam becomes more collimated. Conversely, if
κ0 = 1/2, � = 2π , the beam has a pronounced core region. When s �= 0 and κ0 = 1/2, or
κ0 ≈ 1/2, such beams resemble elastic tornadoes with spiral energy fluxes. The energy density
distributions for these beams are axially symmetrical with respect to the z axis. Therefore,
the transport of energy can be conveniently illustrated by calculated energy densities in a
meridional plane. Figure 2 illustrates this energy distribution for the beam defined by the
spherical harmonic Y 1

2 . It is interesting that the maximum values of the normalized energy
density w′ near the z axis are reached in the planes z′ = ±2, whereas, in the symmetry plane
z = 0, w′ peaks at a larger ring.
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Figure 3. Normal component u′
N of the normalized instantaneous displacement field u′ =

(Re u)/un [un = (2/ω)
√

w0/ρ] of an elastic storm as a function of R′ = R/λ and z′ = z/λ;
λL/µL = 7/9; θ2 = π ; κ0 = 1; � = 4π ; j = 3; s = 0; t = 0.

3. Localized fields

In this section, we consider time-harmonic fields W s
j (1) with π/2 � θ2 � π , κ0 = 1 (θ ′ = θ )

and 2π � � � 4π . For the sake of simplicity, we assume that the beam state function
ν = ν(θ, ϕ) reduces to a constant. Similar electromagnetic and weak gravitational fields were
shown to possess many interesting properties [1–3]. Taking into consideration peculiarities
of energy transport, one can distinguish three types of such localized fields—termed ‘storms’
(θ2 = π, s = 0), ‘whirls’ (θ2 = π, s �= 0) and ‘tornadoes’ (π/2 � θ2 � π, s �= 0).

3.1. Storms and whirls

If θ2 = π , the fields under consideration are composed of plane waves of all possible
propagation directions. They are in effect three-dimensional standing waves with B = S2

and � = 4π (see figures 3 and 4). Substituting the amplitude function W (3) in equation (1)
with θ2 = π , we obtain a standing wave with the displacement vector field u and the force
density f as

u = i|s|+q
√

2ν1ei(sψ−ωt){(−1)p[e β(−s)J ss−1
jp [sin] + e∗β(s)J ss+1

jp [sin]] + e3 J ss
jq[cos]} (27)

f = σe3 = i|s|+p+1
√

2kν1ei(sψ−ωt){(−1)qµL[e β(−s)J ss−1
jq [sin ◦2]

+e∗β(s)J ss+1
jq [sin ◦2]] + e3 J ss

jp[λL + 2µL cos2]} (28)

where

β(s) =
{

−1 (s = −1, −2, . . .)

1 (s = 0, 1, 2, . . .).
(29)

Here, p = 1 − q = 0 if j + |s| is even, and p = 1 − q = 1 if j + |s| is odd.
The deformation γ and the stress σ tensor fields are given by

γ = i|s|+p+1
√

2kν1ei(sψ−ωt)γ0 (30)

σ = i|s|+p+1
√

2kν1ei(sψ−ωt)(λL1J ss
jp[1] + 2µLγ0) (31)
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Figure 4. Azimuthal component S′
A of the normalized energy flux vector of an elastic whirl as a

function of R′ = R/λ and z′ = z/λ; λL/µL = 7/9; θ2 = π ; κ0 = 1; � = 4π ; j = 4; s = 3.

where

γ0 = ρα(s)J ss−2
jp [sin2] + ρ∗α(−s)J ss+2

jp [sin2] + ρ1J ss
jp[sin2]

+ρ2(−1)qβ(−s)J ss−1
jq [sin ◦2]

+ρ∗
2 (−1)qβ(s)J ss+1

jq [sin ◦2] + ρ3J ss
jp[cos2] (32)

with α(1) = 1 and α(s) = −1 for s �= 1.
Using u (27), γ (30), and σ (31), we obtain the kinetic energy density

wK = w0{(J ss−1
jp [sin])2 + (J ss+1

jp [sin])2 + 2(J ss
jq[cos])2} (33)

the elastic energy density

wE = w0

λL + 2µL
{2λL(J ss

jp[1])2 + µL[(J ss−2
jp [sin2])2 + (J ss+2

jp [sin2])2

+(J ss−1
jq [sin ◦2])2 + (J ss+1

jq [sin ◦2])2 + 6(J ss
jp[sin2])2]} (34)

and the energy flux density vector S = S0S ′
AeA which has the only non-vanishing (azimuthal)

component given by

S ′
A = 2

λL + 2µL
{β(−s)J ss−1

jp [sin][µLα(s)J ss−2
jp [sin2] − J ss

jp[λL + µL sin2]]

+β(s)J ss+1
jp [sin][J ss

jp[λL + µL sin2] − µLα(−s)J ss+2
jp [sin2]]

+µLJ ss
jq[cos][β(s)J ss+1

jq [sin ◦2] − β(−s)J ss−1
jq [sin ◦2]]}. (35)

Figure 4 illustrates the azimuthal energy fluxes of the elastic whirl defined by the spherical
harmonic Y 3

4 . There are two domains with large azimuthal energy fluxes, symmetrical with
respect to the plane z = 0, whereas in this plane S ≡ 0. Calculations show that the whirls,
defined by the sectorial spherical harmonics (s = j), have only one such domain. For
such whirls, the azimuthal energy flux peaks in the plane z = 0. Since S ′

A = S ′
A(R′, z′)

is independent of the azimuthal angle ψ , all whirls have circular energy flux lines.
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If s = 0, equations (27), (28), and (32) reduce to

u = iq
√

2ν1e−iωt {(−1)peRJ 01
jp [sin] + e3J 00

jq [cos]} (36)

f = ip+1
√

2kν1e−iωt {(−1)qeRµLJ 01
jq [sin ◦2] + e3J 00

jp [λL + 2µL cos2]} (37)

γ0 = 1
2 (eA ⊗ eA − eR ⊗ eR)J 02

jp [sin2] + 1
2 (eR ⊗ e3 + e3 ⊗ eR)(−1)qJ 01

jq [sin ◦2]

+ρ1J 00
jp [sin2] + ρ3J 00

jp [cos2]. (38)

In this case, the displacement vectors lie in the meridional planes, and the time average energy
flux is everywhere zero. The non-vanishing cylindrical components of the displacement vector
u (36), i.e. the normal component uN and the radial component uR, are independent of the
azimuthal angle ψ . Figure 3 illustrates instantaneous field of the normal component uN for
the case of the storm defined by Y 0

3 . This field is symmetrical with respect to the plane z = 0,
and is more localized in radial directions than along the z axis. The absolute maximums of uN

oscillations are reached at the z axis in the points z′ = ±1.

3.2. Tornadoes

Let us now consider a family of fields W s
j (equation (1)) with π/2 < θ2 < π (2π < � < 4π ).

Similar to storms and whirls, these fields are highly localized. However, the normal and the
radial components of time average energy flux vector S are not vanishing. As a result, lines of
energy flux become spiral, provided that s �= 0. That is why we refer to these unique localized
fields as elastic tornadoes. They bear some similarities to the fields treated in section 2.1, but
their lines of energy flux more closely resemble spirals. As θ2 tends to π , the step of these
spirals decreases. Figure 5 shows a typical energy flux line of such field.



Orthonormal beams and localized fields: II 6267

For the fields with s = 0 and π/2 < θ2 < π (2π < � < 4π ), the lines of energy flux
lie in meridional planes. These fields are intermediate in properties between the elastic storms
and the beams with s = 0 and � = 2π (see section 2.1).

4. Conclusion

Exact time-harmonic solutions of wave equations in an isotropic linear elastic medium are
obtained using expansions in plane waves propagating in a given solid angle �. They describe
superpositions of longitudinal elastic eigenwaves, defined by the spherical harmonics Y s

j .
Two basically different types of orthonormal elastic beams are presented. The first forms

two separate sets of orthonormal beams defined by the spherical harmonics Y s
j with even and

odd j , respectively. These beams are composed from eigenwaves propagating in the solid
angle � = 2π . The second comprises a complete system of orthonormal beams defined by
the whole set of spherical harmonics Y s

j , and for these beams � � 2π .
Three different types of localized elastic fields (called storms, whirls, and tornadoes) are

also presented. All these fields have a very small and clearly defined core region with maximum
intensity of field oscillations. Outside the core, the intensity of oscillations rapidly decreases in
all directions. For elastic storms (� = 4π and s = 0), time average energy flux is identically
zero at all points. Whirls (� = 4π and s �= 0) and tornadoes (2π < � � 4π and s �= 0) have
circular and spiral energy flux lines, respectively.
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